NYMPHAEA Folia naturae Bihariae XXXV	127 - 134	Oradea, 2008
--------------------------------------	-----------	--------------

An abnormal *Emys orbicularis* (L. 1758) hatchling possibly indicating pollution in Pârâul Pețea reserve, Băile 1 Mai, Romania

Adrian Gagiu & Márton Venczel

Țării Crişurilor Museum, Bd. Dacia 1-3, RO-410464 Oradea, Romania adriangagiu@rdslink.ro

Abstract. In April 2008 an *Emys orbicularis* hatchling showing abnormal shell pattern was captured in the Pârâul Peţea natural reserve, NW Romania. Such shell aberration could be the result of pollution in the reserve, which is already subject to high anthropic influence.

Introduction

The European pond turtle *Emys orbicularis* (L. 1758) lives in most parts of South, East and Central Europe, as well as in North Africa, the Iberian Peninsula, Asia Minor and Central Asia, with post-glacial remains in Northern Europe, and it is endangered in many parts of its range (Fritz 1998, Fritz & Andreas 2000). We are not aware of studies on shell anomalies in the populations of *Emys orbicularis* from Romania. The population in Băile 1 Mai is very small, like the other Transylvanian populations (Ghira et al. 2002), and vulnerable due to intense human activities in the entire Peţea basin (Covaciu-Marcov et al. 2000).

Additional shields in chelonians are caused by genetic anomalies or by suboptimal environmental factors during the embryogenesis, and more or less shields than the standard carapacial scutation seem to have no effect on the survivorship of individuals (Ewert 1979, quoted in Bujes & Verrastro 2007).

The aim of the present paper was to record the occurrence of shell anomalies in *Emys orbicularis* in the Pârâul Peţea reserve, possibly caused by known or potential pollution from the nearby human activities.

Material and methods

The Pârâul Peţea reserve is located in Băile 1 Mai spa, 9 km southeast from Oradea, Romania, and was declared in 1932 around the hypothermal lake formed by some extensions of the brook (total length 1.5 km). It is situated within the borders of Băile 1 Mai spa, with a hospital, a hotel, a public pool and drainage facilities as nearby potential pollution sources on the left bank, and agricultural activities (possibly implying the use of pesticides) on the right bank.

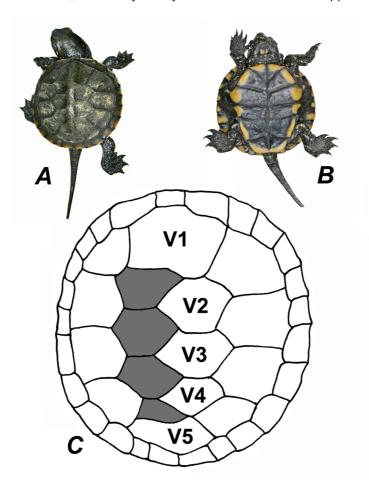
The reserve has roughly two zones: first (A), a pond with thermal, underwater springs, having a depth of 0.1-3 m and an average temperature between 35 °C by the springs and 25 °C near the shore (Paina 1978). The second zone (B) is an elongated pond formed by another diverticulum of the rivulet (in 2002 it was excavated and cleaned of excessive mud and organic debris threatening to overload the biotope).

Aquatic vegetation is abundant, consisting of species of *Potamogeton*, Typha, Phragmites, Lemna, Butomus, Alisma, Spirodela, Cabomba, Elodea, and the local endemic morph Nymphaea lotus L. var. thermalis (D. C.) Tuzson 1908. The aquatic fauna includes characteristic elements such as the Cyprinid Scardinius racovitzai Müller 1958, endemic for the lake, and the relict snail Melanopsis parreyssi Philippi 1847. The herpetofauna of the reserve and its adjacent zone consists of Lissotriton vulgaris (L. 1758), Triturus cristatus (Laurenti 1768), Bombina bombina (L.1758), B. variegata (L.1758), Bufo bufo (L.1758), B. viridis Laur. 1768, Hyla arborea (L. 1758), Pelophylax ridibunda (Pallas 1771), Rana dalmatina Fitzinger 1838, Lacerta agilis (L. 1758), Anguis fragilis L. 1758, Natrix tessellata (Laurenti 1768), N. natrix (L. 1758), and Vipera berus (L. 1758). Other vertebrates in the reserve are Alcedo atthis (L. 1758), Nycticorax nycticorax (L. 1758), Gallinula chloropus (L. 1758), Acrocephalus arundinaceus (L. 1758), Phasianus colchicus L. 1758, Anas platyrhynchos L. 1758, and Rhodeus amarus (Bloch 1782). Odonata and Gerromorphans are abundant in many areas of the lake, the latter including the rare Mesovelia thermalis Horváth 1915, but also several Microvelia, Gerris and Hydrometra species.

On April 23 2008 an *Emys orbicularis* female hatchling was captured by hand near the distal end of zone B, basking close to the shoreline on floating dead leaves and stems of *Typha sp*. Shell anomalies were recorded, the individual was measured, photographed, kept in captivity in an aquaterrarium, and then released at the same spot after six days.

Results

Measurements: maximum linear length of the carapace 25.5 mm.; maximum linear length of the plastron 24.9 mm.; maximum linear width of carapace 24.7 mm.; maximum linear width of plastron 19.7 mm. Compared to the normal shell pattern for the species (Fuhn & Vancea 1961), the individual presented a supernumerary complex with nine vertebral scutes, with the second, third and fourth presenting a diagonal division that split the shield in two, and the fifth being split asymmetrically in two; marginal and plastron shields did not show any alteration (Fig. 1).


The carapace was light brown, with all marginal shields marked by distinct semicircular orange spots, characteristic to *E. o. hellenica* (Valenciennes 1832), the yellow-throated population from Eastern Europe, although the individual had only a larger yellow spot and several small ones on its throat, a character which may include it in the transitory population with yellow-spotted throat (Fritz 1992). The latter is a southeastern European population from Greece, Bulgaria, Croatia, Bosnia and Herzegovina, Serbia, Montenegro, Macedonia, Slovenia, European Turkey, and northeastern Italy, transitory between *E. o. orbicularis* (L. 1758) (darkthroated) and *E. o. hellenica* (Valenciennes 1832) (yellow-throated), and its range is reaching up to the region south to Budapest (Fritz 1992, 1996). The nuchal shield of the specimen had parallel sides, which is rather rare in *E. o. hellenica* but more frequent in *E. o. orbicularis* (Fritz 1995, 1996), and the plastron was yellow with a very large, central black spot, characteristic of *E. o. orbicularis*.

Discussion

The mixed morphological features of the specimen could possibly suggest hybridization between *E. o. orbicularis* and *E. o. hellenica*, such a hybrid population (or at least showing some characters of *E. o. hellenica*) being recorded in Turkey, Greece, Bulgaria and southern Romania (Fritz 1994, 1995, Fritz & Obst 1995). But *E. orbicularis* populations in the Aegean region of Turkey show high variation of morphological characters (Ayaz et al. 2004), and in the populations from Crimea,

Ukraine, no haplotypes for *E. o. hellenica* have been recorded, even though individuals resembled *E. o. hellenica* morphologically (Kotenko et al. 2005). Thus the possible inclusion of the studied hatchling to a transition population between the nominotypical subspecies and *E. o. hellenica* should be treated with caution.

In chelonians, accessory or asymmetric scutes occur in approximately 15

Fig. 1. Abnormal scute pattern in an *Emys orbicularis* hatchling in Pârâul Peţea reserve: A – dorsal view; B – ventral view; C – representation of the carapace (V1-V5 vertebral scutes; supernumerary scutes in grey).

% of individuals, but in *Emys orbicularis* populations such anomalies are rare (Najbar & Maciantowicz 2000, Mosimann 2002). Such abnormalities could be caused by: chemical pollution, especially heavy metals and pesticides; by inbreeding de-

pression due to small population size, or by outbreeding depression (contact of very dissimilar genomes); and/or by suboptimal temperature or humidity during incubation (Ayres Fernández & Cordero Rivera 2004). In *Chrysemys picta* (Schneider 1783), scute anomalies are more common at the northern limit of the range, possibly caused by suboptimal temperatures during incubation (MacCulloch 1981). Pesticides and heavy metals are known to cause a higher rate of scute anomalies in *Emys orbicularis* in Northern Spain (Ayres Fernández & Cordero Rivera 2004), and abnormal development in eggs in the *Chelydra serpentina* (L. 1758) population from the Great Lakes region (Bishop et al. 1998).

The low density and small size of the isolated subpopulation in the reserve may support genetic drift or a negative genetic impact of allochtonous individuals. But the presence of human sources of pollution near the reserve (Danciu 2005) could be consistent with the hypothesis of chemical pollution causing shell anomalies. In 2002, an accidental pollution with oily products was observed, and in the following year a treatment with the common pesticide Roundup was applied against invading *Typha*. As experimental data proved Roundup to be highly lethal to amphibian larvae and juveniles (Relyea 2005), its negative effect on reptiles may also be supposed. An experiment to distinguish between the potential causes of shell anomalies, by incubating eggs from the Pârâul Peţea reserve in controlled conditions, could not be undertaken yet, as nesting sites within the reserve are still unidentified.

Nesting sites being used during long periods (up to 10 years) by at least some of the females, knowledge about nesting site conditions is essential for protection of *Emys orbicularis* populations, especially since the ecological parameters of nesting areas could change during the long lifespan of the turtles, thus forcing females to look for new nesting areas (Mitrus 2005). Most nests are localized within 150 m from water bodies, but some females could use more distant sites even if there were good nesting areas close to the water; nesting sites are used repeatedly as long as they retain ecological features suitable for egg incubation, and they are changed when disturbed by man or shaded by growing vegetation (Lindeman 1992), or sometimes even after no visible changes in the environment (Mitrus 2005). Therefore, the contribution of suboptimal nesting conditions to the scute anomalies should not be excluded, in addition to the known pollution with the Roundup pesticide.

Hatchlings may have even more stringent microhabitat requirements than juveniles or adults; they prefer temporary ponds or small, similar areas in the big ponds, with shallow water and dense vegetation, close to the nesting area in order to avoid competition with adults and to reduce the risk of drowning and

predator attacks, and they exhibit fidelity to such optimal patches of habitat (Ayres & Cordero 2007). In the absence of temporary ponds in the area, this description fits the capture site for the abnormal hatchling in the Pârâul Peţea reserve.

Seams in the superficial keratinous layer of the shell of chelonians, which are weak points compared to the interdigitations of the sutures of bony plates, are only occasionally coincident with such sutures of the underlying bones (Pritchard 1988). Therefore, since the examined individual could not be assigned to the variations in bony plate pattern and their respective functions as discussed by Pritchard, and since bones were more important than the keratinous scutes in determining shell strength in most chelonians, the adaptative value of scute anomalies and their impact on turtle biology remain uncertain.

In the absence of data from chemical analysis of water and soil from the Pârâul Peţea eserve concerning pesticides (and heavy metals), which are the more probable pollutants from the known sources near the reserve, as well as the more probable cause for scute anomalies, their hypothesized negative effect on turtle shell, nesting and habitat, as well as their potential negative impact over the biotope need further clarification.

Acknowledgements

The authors wish to thank Ioan V. Ghira (Faculty of Biology and Geography, Babeş-Bolyai University, Cluj-Napoca) for his critical observations which helped improve the manuscript.

References

- Ayaz, D., Taşkavak, E., Budak, A. 2004. Some investigations on the taxonomy of the *Emys orbicularis* (Linnaeus 1758) (Testudinata: Emydidae) specimens from Aegean region of Turkey. E. U. *Journal of Fisheries & Aquatic Sciences* **21** (3-4): 279-285.
- Ayres, C., Cordero, A. 2007. Site tenacity in European pond turtle (*Emys orbicularis*) hatchlings in Northwestern Spain. *Amphibia-Reptilia* **28**: 144-147.
- Ayres Fernández, C., Cordero Rivera, A. 2004. Asymmetries and accessory scutes in *Emys orbicularis* from Northwest Spain. *Biologia*, Bratislava **59**, Suppl. 14: 85-88.
- Bishop, C. A., Ng, P., Pettit, K. E., Kennedy, S. W., Stegeman, J. J., Norstrom, R. J., Brooks, R. J. 1998. Environmental contamination and developmental abnormalities in eggs and hatchlings of the common snapping turtle (*Chelydra serpentina*) from the Great Lakes-St. Lawrence river basin (1989-91). *Environmental Pollution* **101**: 143-156.

- Bujes, C. S., Verrastro, L. 2007. Supernumerary epidermal shields and carapace variation in Orbigny's slider turtles, *Trachemys dorbigni* (Testudines, Emydidae). *Revista Brasileira de Zoologia* **24** (3): 666-672.
- Covaciu-Marcov, S. D., Ghira, I., Venczel, M. 2000. Contribuții la studiul herpetofaunei din zona Oradea. *Nymphaea* **28**: 143-158.
- Danciu, V. M. 2005. Considerații asupra unor factori de mediu cu privire la rezervația naturală "Pârâul Peţea" de la Băile 1 Mai. *Nymphaea* 32: 115-147.
- Fritz, U. 1992. Zur innerartlichen Variabilität von Emys orbicularis (Linnaeus, 1758).
 2. Variabilität in Osteuropa und Redefinition von Emys orbicularis orbicularis (Linnaeus, 1758) und E. o. hellenica (Valenciennes, 1832) (Reptilia, Testudines, Emydidae). Zoologische Abhandlungen 47 (1): 37-77.
- Fritz, U. 1994. Zur innerartlichen Variabilität von *Emys orbicularis* (Linnaeus, 1758). 4. Variabilität und Zoogeographie im pontokaspischen Gebiet mit Beschreibung von drei neuen Unterarten (Reptilia: Testudines: Emydidae). *Zoologische Abhandlungen* **48** (1): 53-93.
- Fritz, U. 1995. Zur innerartlichen Variabilität von *Emys orbicularis* (Linnaeus, 1758). 5a. Taxonomie in Mittel-Westeuropa, auf Korsika, Sardinien, der Apenninen-Halbinsel und Sizilien und Unterartengruppen von *E. orbicularis* (Reptilia: Testudines: Emydidae). *Zoologische Abhandlungen* **48** (3): 185-242.
- Fritz, U. 1996. Zur innerartlichen Variabilität von *Emys orbicularis* (Linnaeus, 1758). 5b. Intraspezifische Hierarchie und Zoogeographie (Reptilia: Testudines: Emydidae). *Zoologische Abhandlungen* **49** (1): 31-71.
- Fritz, U. 1998. Introduction to zoogeography and subspecific differentiation in *Emys orbicularis* (Linnaeus, 1758). Proceedings of the Emys Symposium Dresden 96. Mertensiella **10**: 1-27.
- Fritz, U., Andreas, B. 2000. Distribution, variety of forms and conservation of the European pond turtle. Proceedings of the 2nd International Symposium on *Emys orbicularis*, June 1999. Chelonii **2**: 23-26.
- Fritz, U., Obst, F. J. 1995. Morphologische Variabilität in den Intergradationszonen von *Emys orbicularis orbicularis* und *E. orbicularis hellenica*. Salamandra **31**(3): 157-180.
- Fuhn, I. E., Vancea, Şt. 1961. Reptilia (ţestoase, şopârle, şerpi). In: *Fauna Republicii Populare Române* **14** (2) (Ed. Academiei RPR) Bucharest, 356 pp.
- Ghira, I., Venczel, M., Covaciu-Marcov, S., Mara, Gy., Ghile, P., Hartel, T., Török, Zs., Farkas, L., Rácz, T., Farkas, Z., Brad, T. 2002. Mapping of Transylvanian herpetofauna. *Nymphaea* **29**: 145-201.
- Kotenko, T., Zinenko, O., Guicking, G., Sauer-Gürth, H., Wink, M., Fritz, U. 2005. First data on the geographic variation of *Emys orbicularis* in Ukraine: mtDNA haplotypes, coloration, and size. In: Ananjeva, N. & Tsinenko, O. (eds.): Herpetologia Petropolitana: Proceedings of the 12th ordinary general meeting of the Societas Europaea Herpetologica, 12-16 August 2003, Saint-Petersburg, Russia (Russian Journal of Herpetology 12, Supplementum): 43-46, St. Petersburg & Moscow.
- Lindeman, P. V. 1992. Nest-site fixity among painted turtles (*Chrysemys picta*) in northern Idaho. *Northwestern Naturalist* **73**: 27-30.

- MacCulloch, R. D. 1981. Variation in the shell of *Chrysemys picta bellii* from southern Saskatchewan. *Journal of Herpetology* **15**: 181-185.
- Mitrus, S. 2005. Spatial distribution of nests of the European pond turtle, *Emys orbicularis* (Reptilia: Testudines: Emydidae), from long-term studies in central Poland. *Zoologische Abhandlungen* **55**: 96-102.
- Mosimann, D. 2002. Situation einer Population von Europäischen Sumpfschildkröten, *Emys orbicularis* (Linnaeus 1758), 50 Jahre nach der ersten Ansiedlung in Moulinde-Vert (Genf, Schweiz). *Testudo* **11** (4): 25-39.
- Najbar, B., Maciantowicz, M. 2000. Deformations and damage to carapaces of the European Pond Turtle *Emys orbicularis* (L.) in Western Poland. Proceedings of the 2nd International Symposium on *Emys orbicularis*, Chelonii **2**: 88-94.
- Paina, M. I. 1978. Un endemism mai puţin cunoscut din rezervaţia naturală de la Băile 1 Mai: Mesovelia thermalis Horváth (Ins., Het.). Nymphaea **6**: 497–502.
- Pritchard, P. C. H. 1988. A survey of neural bone variation among recent chelonian species, with functional interpretations. *Acta Zoologica Cracoviensia* **31** (2): 625-686.
- Relyea, R. A. 2005. The lethal impact of Roundup on aquatic and terrestrial amphibians. *Ecological Applications* **15** (4): 1118-1124.